

 Navigation

 	
 index

 	
 next |

 	pgctl 1.1.0 documentation

pgctl: the playground controller

Issues [https://github.com/yelp/pgctl/issues] |
Github [https://github.com/yelp/pgctl] |
PyPI [https://pypi.python.org/pypi/pgctl/]

Release v1.1. (Installation)

Introduction

pgctl is an MIT Licensed [https://github.com/Yelp/pgctl/blob/master/COPYING] tool to manage developer “playgrounds”.

Often projects have various processes that should run in the backround
(services) during development. These services amount to a miniature staging
environment that we term playground. Each service must have a well-defined
state at all times (it should be starting, up, stopping, or down), and should be
independantly restartable and debuggable.

pgctl aims to solve this problem in a unified, language-agnostic
framework (although the tool happens to be written in Python).

As a simple example, let’s say that we want a date service in our playground,
that ensures our now.date file always has the current date.

$ cat playground/date/run
date > now.date

$ pgctl-2015 start
$ pgctl-2015 status
date -- up (0 seconds)

$ cat now.date
Fri Jun 26 15:21:26 PDT 2015

$ pgctl-2015 stop
$ pgctl-2015 status
date -- down (0 seconds)

Feature Support

	User-friendly Command Line Interface

	Simple Configuration

	Python 2.6—3.4

User Guide

This part of the documentation covers the step-by-step
instructions and usage of pgctl for getting started quickly.

	Installation
	Distribute & Pip

	Get the Code

	Quickstart
	Setting up

	Writing Playground Services

	Aliases

	Sub-Commands
	start

	stop

	restart

	debug

	status

	log

	reload

	config

	Advanced Usage
	Services that stop slowly

	Services that start slowly

	Handling subprocesses in a bash service

Developer Guide

This part of the documentation gives an internal look at the design
decisions for pgctl.

	Developers
	Design Rationale

API Documentation

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Documentation
	Submodules

	pgctl.cli module

	Module contents

Contributor Guide

If you want to contribute to the project, this part of the documentation is for
you.

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pgctl 1.1.0 documentation

Installation

This part of the documentation covers the installation of pgctl.
The first step to using any software package is getting it properly installed.

Distribute & Pip

Installing pgctl is simple with pip [https://pip.pypa.io], just run
this in your terminal:

$ pip install pgctl

Get the Code

pgctl is actively developed on GitHub, where the code is
always available [https://github.com/Yelp/pgctl].

You can either clone the public repository:

$ git clone git://github.com/yelp/pgctl.git

Download the tarball [https://github.com/yelp/pgctl/tarball/master]:

$ curl -OL https://github.com/yelp/pgctl/tarball/master

Or, download the zipball [https://github.com/yelp/pgctl/zipball/master]:

$ curl -OL https://github.com/yelp/pgctl/zipball/master

Once you have a copy of the source, you can embed it in your Python package,
or install it into your site-packages easily:

$ python setup.py install

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pgctl 1.1.0 documentation

Quickstart

This page attempts to be a quick-and-dirty guide to getting started with pgctl.

Setting up

The minimal setup for pgctl is a playground directory containing the services
you want to run. A service consists of a directory with a run script. The
script should run in the foreground.

$ cat playground/date/run
date > now.date

Once this is in place, you can start your playground and see it run.

$ pgctl start
$ pgctl logs
[webapp] Serving HTTP on 0.0.0.0 port 36474 ...

$ curl

Writing Playground Services

pgctl works best with a single process. When writing a run script in
bash, use the exec statement to replace the shell with your process. This
avoids a process tree with bash as the parent of your service. Having a single
process allows simple management of state and proper signalling for stopping
the service.

Bad: (don’t do this!)

#!/bin/bash
sleep infinity # creates a new process

Good: (do it this way!)

#!/bin/bash
exec sleep infinity # replaces the *current* process

Without the exec, stopping the service will kill bash but the sleep process
will be left behind. This kind of process-tree management is too complex for
pgctl to auto-magically fix it for you, but it will let you know if it
becomes a problem:

$ pgctl restart
Stopping: sleeper
Stopped: sleeper
ERROR: We sent SIGTERM, but these processes did not stop:
 USER PID ACCESS COMMAND
playground/sleeper: buck 2847827 f.c.. sleep

To fix this temporarily, run: lsof -t playground/sleeper | xargs kill -9
To fix it permanently, see:
 http://pgctl.readthedocs.org/en/latest/user/quickstart.html#writing-playground-services

Aliases

With no arguments, pgctl start is equivalent to pgctl start default.
By default, default maps to a list of all services.
You can configure what default means via playground/config.yaml:

aliases:
 default:
 - service1
 - service2

You can also add other aliases this way. When you name an alias, it simply
expands to the list of configured services, so that pgctl start A-and-B
would be entirely equivalent to pgctl start A B.

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pgctl 1.1.0 documentation

Sub-Commands

pgctl has eight basic commands: start, stop, restart, debug, status, log, reload, config

Note

With no arguments, pgctl <cmd> is equivalent to pgctl <cmd> default.
By default, default maps to all services. See Aliases.

start

$ pgctl start <service=default>

Starts a specific service, group of services, or all services. This command is blocking until all services have successfully reached the up state. start is idempotent.

stop

$ pgctl stop <service=default>

Stops a specific service, group of services, or all services. This command is blocking until all services have successfully reached the down stated. stop is idempotent.

restart

$ pgctl restart <service=default>

Stops and starts specific service, group of services, or all services. This command is blocking until all services have successfully reached the down stated.

debug

$ pgctl debug <service=default>

Runs a specific service in the foreground.

status

$ pgctl status <service=default>
<service> (pid <PID>) -- up (0 seconds)

Retrieves the state, PID, and time in that state of a specific service, group of services, or all services.

log

$ pgctl log <service=default>

Retrieves the stdout and stderr for a specific service, group of services, or all services.

reload

$ pgctl reload <service=default>

Reloads the configuration for a specific service, group of services, or all services.

config

$ pgctl config <service=default>

Prints out a configuration for a specific service, group of services, or all services.

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pgctl 1.1.0 documentation

Advanced Usage

You may (or may not) want these notes after using pgctl for a while.

Services that stop slowly

When you have a service that takes a while to stop, pgctl may incorrectly error out saying that the service left processes behind. By default, pgctl only waits up to two seconds. To tell pgctl to wait a bit longer write a number of seconds into a timeout-stop file.

$ echo 10 > playground/uwsgi/timeout-stop
$ git add playground/uwsgi/timeout-stop

Services that start slowly

Similarly, if pgctl needs to be told to wait longer to start your service, write a timeout-ready file.

If there’s a significant period between when the service has started (up) and when it’s actually doing it’s job (ready),
or if your service sometimes stops working even when it’s running, create a runnable ready script in the service
directory and prefix your service command with our pgctl-poll-ready helper script. pgctl-poll-ready will run
the ready script repeatedly to determine when your service is actually ready. As an example:

$ cat playground/uwsgi/run
make -C ../../ minimal # the build takes a few seconds
exec pgctl-poll-ready ../../bin/start-dev

$ cat playground/uwsgi/ready
exec curl -s localhost:9003/status

$ cat playground/uwsgi/timeout-ready
30

Handling subprocesses in a bash service

If you’re unable to use exec to create a single-process service, you’ll need to handle SIGTERM and kill off your subprocesses yourself. In bash this is tricky. See the example in our test suite for an example of how to do this reliably:

https://github.com/Yelp/pgctl/blob/master/tests/examples/output/playground/ohhi/run

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pgctl 1.1.0 documentation

Developers

Design Rationale

Directory Structure

$ pwd
/home/<user>/<project>

$ tree playground/
playground/
├── service1
│ ├── down
│ ├── run
│ ├── stderr.log
│ ├── stdout.log
│ └── supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service1/supervise
├── service2
│ ├── down
│ ├── run
│ ├── stderr.log
│ ├── stdout.log
│ └── supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service2/supervise
└── service3
 ├── down
 ├── run
 ├── stderr.log
 ├── stdout.log
 └── supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service3/supervise

There are a few points to note: logging, services, state, symlinking.

logging

stdin and stdout will be captured from the supervised process and written to log files under
the service directory. The user will be able to use the pgctl logs command to aggregate
these logs in a readable form.

services

All services are located under the playground directory.

state

We are using s6 for process management and call the s6-supervise command directly.
It was a design decision to not use svscan to automatically supervise all services. This was due
to inflexability with logging (by default stdout is only logged). To ensure that every service
is in a consistent state, a down file is added to each service directory (man supervise) if it does not
already exist.

symlinking

Currently pip install . calls shutil.copy to copy all files in the current project when in the project’s
base directory. Having pipes present in the projects main directory attempts to copy the pipe and deadlocks.
To remedy this situation, we have symlinked the supervise directory to the user’s home directory to prevent
any pip issues.

Design Decisions

Design of debug

Unsupervise all things when down

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	pgctl 1.1.0 documentation

API Documentation

This is automatically generated documentation from the source code.
Generally this will only be useful for developers.

Submodules

pgctl.cli module

Module contents

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	pgctl 1.1.0 documentation

Index

 Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		pgctl 1.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 Yelp Inc..
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

